81 research outputs found

    Finding Fair and Efficient Allocations

    Full text link
    We study the problem of allocating a set of indivisible goods among a set of agents in a fair and efficient manner. An allocation is said to be fair if it is envy-free up to one good (EF1), which means that each agent prefers its own bundle over the bundle of any other agent up to the removal of one good. In addition, an allocation is deemed efficient if it satisfies Pareto optimality (PO). While each of these well-studied properties is easy to achieve separately, achieving them together is far from obvious. Recently, Caragiannis et al. (2016) established the surprising result that when agents have additive valuations for the goods, there always exists an allocation that simultaneously satisfies these two seemingly incompatible properties. Specifically, they showed that an allocation that maximizes the Nash social welfare (NSW) objective is both EF1 and PO. However, the problem of maximizing NSW is NP-hard. As a result, this approach does not provide an efficient algorithm for finding a fair and efficient allocation. In this paper, we bypass this barrier, and develop a pseudopolynomial time algorithm for finding allocations that are EF1 and PO; in particular, when the valuations are bounded, our algorithm finds such an allocation in polynomial time. Furthermore, we establish a stronger existence result compared to Caragiannis et al. (2016): For additive valuations, there always exists an allocation that is EF1 and fractionally PO. Another contribution of our work is to show that our algorithm provides a polynomial-time 1.45-approximation to the NSW objective. This improves upon the best known approximation ratio for this problem (namely, the 2-approximation algorithm of Cole et al. (2017)). Unlike many of the existing approaches, our algorithm is completely combinatorial.Comment: 40 pages. Updated versio

    EFX Exists for Three Agents

    Get PDF
    We study the problem of distributing a set of indivisible items among agents with additive valuations in a fair\mathit{fair} manner. The fairness notion under consideration is Envy-freeness up to any item (EFX). Despite significant efforts by many researchers for several years, the existence of EFX allocations has not been settled beyond the simple case of two agents. In this paper, we show constructively that an EFX allocation always exists for three agents. Furthermore, we falsify the conjecture by Caragiannis et al. by showing an instance with three agents for which there is a partial EFX allocation (some items are not allocated) with higher Nash welfare than that of any complete EFX allocation.Comment: Full version of a paper published at Economics and Computation (EC) 202

    Fairness in Power Flow Network Congestion Management with Outer Matching and Principal Notions of Fair Division

    Get PDF
    The problem of network flow congestion occurring in power networks is increasing in severity. Especially in low-voltage networks this is a novel development. The congestion is caused for a large part by distributed and renewable energy sources introducing a complex blend of prosumers to the network. Since congestion management solutions may require individual prosumers to alter their prosumption, the concept of fairness has become a crucial topic of attention. This paper presents a concept of fairness for low-voltage networks that prioritizes local, outer matching and allocates grid access through fair division of available capacity. Specifically, this paper discusses three distinct principal notions of fair division; proportional, egalitarian, and nondiscriminatory division. In addition, this paper devises an efficient algorithmic mechanism that computes such fair allocations in limited computational time, and proves that only egalitarian division results in incentive compatibility of the mechanism

    Consensus-Halving: Does It Ever Get Easier?

    Get PDF
    In the ε\varepsilon-Consensus-Halving problem, a fundamental problem in fair division, there are nn agents with valuations over the interval [0,1][0,1], and the goal is to divide the interval into pieces and assign a label "++" or "-" to each piece, such that every agent values the total amount of "++" and the total amount of "-" almost equally. The problem was recently proven by Filos-Ratsikas and Goldberg [2019] to be the first "natural" complete problem for the computational class PPA, answering a decade-old open question. In this paper, we examine the extent to which the problem becomes easy to solve, if one restricts the class of valuation functions. To this end, we provide the following contributions. First, we obtain a strengthening of the PPA-hardness result of [Filos-Ratsikas and Goldberg, 2019], to the case when agents have piecewise uniform valuations with only two blocks. We obtain this result via a new reduction, which is in fact conceptually much simpler than the corresponding one in [Filos-Ratsikas and Goldberg, 2019]. Then, we consider the case of single-block (uniform) valuations and provide a parameterized polynomial time algorithm for solving ε\varepsilon-Consensus-Halving for any ε\varepsilon, as well as a polynomial-time algorithm for ε=1/2\varepsilon=1/2; these are the first algorithmic results for the problem. Finally, an important application of our new techniques is the first hardness result for a generalization of Consensus-Halving, the Consensus-1/k1/k-Division problem. In particular, we prove that ε\varepsilon-Consensus-1/31/3-Division is PPAD-hard

    Probability, credibility, possibility

    No full text

    The so-called Petersburg paradox

    No full text

    Quelques applications des principes topologiques à la géométrie des corps convexes

    No full text

    Sur un théorème de M. V. Jarník

    No full text

    Petition for Paternity and Maintenance (Note de lege ferenda)

    No full text
    Digitalizacja i deponowanie archiwalnych zeszytów RPEiS sfinansowane przez MNiSW w ramach realizacji umowy nr 541/P-DUN/201
    corecore